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. OVERVIEW

● Neural Network + Hidden Markov models (HMMs):

● networks for discrimination and probability estimation

● embedding networks in HMM’s

● application to fault detection (different from speech)

Q Application to Deep Space Network (DSN) Antenna Monitoring:

●

c

●

online fault detection in large 34 meter ground antenna

discriminative vs. generative models for novelty detection

experiment al evaluation >,

● Conclusions and Application Status
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(first order):● Explicit Assumptions

1. Present state only depends on previous state.

2. Observable are independent over time given the states.

t+2
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BASIC HIDDEN MARKOV EQUATIONS

L e t  @t = ~, ~-l,..{d 0 “A}.

and I’f_~ = {0,,6, -,,... ,&+l}.
.

. Probability of Current State given Past Observed Data:

where

.8

. Probability of Past State given Observed Data to Present

t – k ~-k[~t-k)p(w;-klrt-k)P(WI
P(wj

‘@t) = m, P(4-kl@t-k)P(4-k lJw



NEURAL NETWORKS FOR PROBABILITY ESTIMATION

. Theoretical Results:

●

Theory shows that networks can approximate p(wi Iinput features)

Must use appropriate loss function: mean squared error or cross entropy

Results are asymptotic, assume global minimum in weight space.

. Links with Conventional Statistics
.

. Feedforward networks can be considered a generalization of logistic regres-
sion: logistic nature of output is appropriate form for approximating poste-
rior probability ies from exponential families.

● Practical Consequences

● Practical results suggest
mation.

.,.

that networks

. Networks are better at probability
parametric models (e.g., near-neighbor,

do a decent job of probability esti- -

estimation than competing non-
decision tree methods).



HYBRID HMM/NEURAL NETWORK MODELS

. Duality of Observed data term:

. Update equations are valid when terms are scaled by constants

. By Bayes’.  rule can write:

. Estimation of p(w~ 16f)

P(w; l%) = posterior

Train a feedforward

terms:

probability of class j given inputs Of.
>

network with MSE or GE loss functions.

Simple 12 input, 8 hidden units, 4 output units (normal+ 3 fault conditions)
feedforward network trained using conjugate gradient descent.

.
Cross-validation indicated that network size was not important.



HYBRID HMM/NN FOR FAULT DETECTION

. Key Ingredients:

States are known a priori, correspond to distinct physical states of svstem,
e.g., normal, fault conditions.

u
,

Observable-state conditional dependencies, p(ti~ I@t) are learned bv neuralu
network from suit ably generated training data.

HMM transition probabilities are a function of system MTBF and other
long term chara.ct erist  its:

all =1– T
MTBF

Only a single model is used: purpose is to infer ‘~hidden” state sequence.
i.e.,

estimate p(u~ I@t)
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DETECTING NOVEL STATES

. Basic Problem

. In fault detection, it is highly likely that the set of known faults are not
exhaudive.

. Solution

● Let w~~l  be the “novel’) state

● Let ~d(wi
states

. If we can

x,ul,,~) be the discriminative probabilities among the m known

define, p(xlwl,...,~ )? P(Z Wm+l )? and P(wm+l ), then

P(wi[x) = Pd(w~lx7wl,...,  m)P(wl,mlx)mlx)

and

P(wm+l  lx) = 1 – p(w~,...,m[x)

● P(x ‘m+l ) ‘s ‘etermined a priori, e.g., a non-informative prior density.

I
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CONCLUSION

● S umrnary

Neural networks plus HMMs can provide excellent
rate performance in fault detection applications

Modified models allow for novelty detection

detection and false alarm

. Key Contribution of Neural Network Model:

. Excellent non-parametric discrimination capability

. A good estimator of posterior state probabilities, even in high-dimensions, ,

thus, can be embedded within overall probabilistic model (HMM).

Q Simple to implement

. Application Status:

compared to other non-parametric models.
;’

.

. NN/HMM monitoring model is currently being integrated with the new
DSN antenna controller software: will be online monitoring a new DSN 34m
antenna (DSS-24) by July.


